Application Fields of 316L Stainless Steel Powder

Stainless Steel Powder 316L Stainless Steel Powder Applications

316L stainless steel Powder This metal powder is used widely in many fields because of its outstanding corrosion resistance. Here is a detailed guide to using 316L Stainless Steel Powder in various fields.

1. Aerospace field

In aerospace, 316L Stainless Steel Powder is widely used for the manufacture of high-strength components that are corrosion resistant. Due to its excellent resistance to high temperatures and oxidation, 316L stainless powder can provide a stable performance even in harsh environments, such as high pressure and speed. This ensures the safe and reliable operation and maintenance of aircraft. In the production of jet engines for instance, 316L steel powder is employed to produce high-temperature parts such as combustion chambers and turbine blades which can withstand up to 600°C.

Additionally, 316L powder is used for manufacturing structural components of high strength in aerospace vehicles. These include beams and frames. Due to the excellent processing and weld performance, it is easily processed into different complex structural components. Dimensional accuracy and stability are ensured.

2. Petrochemical Industry

In the petrochemical industries, 316L powder stainless steel is widely used for manufacturing high-strength equipment and pipelines that are corrosion resistant. The 316L stainless steel powder has excellent corrosion resistance and can resist various chemical substances. This ensures the long-term stability of the equipment. In petrochemical machinery manufacturing, for example, 316L stainless powder is used to make high-temperature high-pressure pipelines and containers. This can withstand corrosion from various chemicals, while ensuring its sealing and strength.

Additionally, 316L stainless powder is used for manufacturing filters, separators, catalyst carriers, and other components within the petrochemical industry. Its high-temperature and corrosion-resistant properties can help ensure that equipment will operate reliably for a long time and increase production efficiency.

Medical field

In the medical field 316L powder stainless steel is widely used for manufacturing medical devices and implants of high standards. Its non-toxic, harmless, and biocompatible effects on human bodies, along with its high biocompatibility can guarantee the stability and safety of a product for a long time. This is why it's widely used in the manufacturing of medical devices and human implants. In manufacturing artificial joints and prostheses as well as other implants, 316L Stainless Steel Powder is used for support structures and connectors. It ensures strength, stability, wear resistance and corrosion resistance.

In the medical field, 316L powder is used for manufacturing high-quality surgical tools, medical devices and other products. With its excellent processing and welding performances, it is possible to manufacture complex-shaped devices, which improves the reliability of medical equipment.

4. Industrial sector

In the industry, 316L stainless powder is widely used for manufacturing high-strength corrosion-resistant equipment and components. You can use it to make high-quality mechanical elements such as bolts, springs, chemical equipment and ship components. The excellent corrosion resistance and anti-oxidant performance of this material can help to ensure that the equipment will operate smoothly for a long time and increase production efficiency.

The power and electronic industries are also major users of 316L powder. 316L stainless powder is used in the manufacture of batteries and electronic components to produce components such as brackets, shells and terminals. These components can enhance quality and safety.

Summary: 316L stainless-steel powder is widely used in a variety of fields.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our professional team offers perfect solutions to improve the efficiency of different industries, create value and cope with various challenges. Send an email to Sales2@nanotrun.com for 316L powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials, are leading the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-saving and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made of fly ash, cement, slags and river sand.

Its characteristics include high strength, lightweight, heat insulation, noise insulation, thermal insulation. It also has a convenient and efficient design, a long life span, and can reduce energy consumption and maintenance costs of buildings.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which allows it to reduce the weight and improve the performance of the structure.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of a building.

Construction of CLC block can be convenient and quick, allowing for a shorter construction period.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has better thermal and sound insulation properties, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load-bearing and service life.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, such as a simple production process, low costs, and good environmental performance.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote a greener construction industry.

Application Fields of Nickel Based Alloys

Nickel Based Alloys: Applications

Nickel-based alloy Based on nickel, it is made up of various alloying materials. It has excellent mechanical properties, high-temperature resistance and corrosion resistance. It's used in aviation and aerospace as well as petrochemical. This article will give a detailed description of the Applications of nickel-based alloys in different fields including aerospace, petrochemicals and power energy. It also provides references for research in other related fields.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is an important area for the application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets, or satellites.

Aircraft engine components

Aircraft engines include:

The main equipment used in aviation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

The structural components for satellites must be made of materials that have excellent corrosion resistance and high temperature resistance. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are mainly used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes in the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

The core equipment of the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, as well as mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are primarily used to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

In the manufacture of gas turbines such as blades and key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial Joint

Artificial joints can be:

* Medical devices that replace diseased joints.

* Materials that are highly corrosion resistant.

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in aerospace and petrochemicals as well as power energy and biomedicine. In the future, with the development of technology, it is expected that nickel-based materials will be more widely used, and they will contribute more to industrial and technological development.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to enhance the efficiency of different industries, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. The molecular weight of the compound is 134.72. The zinc ions, Zn2+ and sulfur ions, S2- are bonded together to form the sulfide. The sulfur ions form a regular tetrahedron in which the zinc ion sits in the middle. In contrast, the ion sulfur is found in the center a tetrahedron. This structure can also be described as a facecentered cubic system where zinc and sulfur are at the vertex of the crystal and at the center of the face.

Zinc Sulfide (also known as Zinc Sulfide) is a white, insoluble solid. It is not soluble in water. However, it is soluble with bases and acids. Zinc sulfide's density is 3.98 g/cc, with a melting point of 1350 degrees C. and a boiling point of 1650° C. It is also transparent and has good optical properties. The light transmission is between 200 and 400nm. Zinc sulfide has relatively stable properties, but under certain circumstances it can also undergo reactions. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc sulfide will react with hydroxide molecules to produce zinc hydroxide.

Application of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique crystal structure and chemical and physical characteristics of zinc sulfide have made it a widely used compound in a variety of fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has many uses, including in fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit different colors. In the manufacture of fluorescent lamps, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. For instance, zinc is used in the manufacture of anti-malarials, like zincsulfate or zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. catalyst manufacturing

Zinc sulfur acts as a catalyst for the creation of other compounds like zinc acetates, acetones, and methylisobutylketone. Zinc sulfur is an excellent catalyst for manufacturing due to its high activity.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Production method of Zinc Sulfide ()

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc salt and the sulfur salt were combined in a liquid solution to precipitate, filter, and dry zinc sulfide.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration : The reaction is filtered in order to obtain a filtrate that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

The benefits of chemical precipitation include low cost and a high level of product purity. The disadvantages of this method are that it requires a large number of detergents and precipitating agents. Also, the waste liquid generated must be further processed before being discharged, which can cause environmental pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid-phase synthesis. A solid reaction between zinc oxides and sulfur-containing elements was used to produce zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: Raw materials undergo a pretreatment at high temperature to ensure that all components react and generate zinc and sulfur vapour.

Synthesis: Zinc and sulfur are combined at high temperature to form zinc sulfide.

Collection: The powdered zinc sulfide is collected and processed accordingly.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high temperatures, and it uses a lot of carbon and sulfur powders, which can be harmful to the environment.


3. Soluthermal method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in an organic solution under high temperature and pressure, and then generate zinc sulfide by hydrothermal reaction.

Preparation Solution: Dissolve an appropriate amount of zinc salt and sulfur in organic solvent.

High temperature and pressure reaction: The solution above will be placed in a high temperature and pressure reactor. Under these conditions, the hydrothermal reactions will produce zinc sulfide.


Collection: The generated powder of zinc sulfide will be collected and treated.

The solvothermal technique has the advantage of a high purity product, a good crystallinity and a relatively straightforward process. The method is also capable of using different organic solvants and reaction conditions in order to regulate product properties. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental and safety issues and implement appropriate technologies and measures for environmental protection.

Prospect Market of Zinc Sulfide

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. The use of phosphors is expanding as science and technology continue to develop. This includes solar cells, optical storage, biomedicine, etc. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Solar cells, the most popular application of photoelectric materials, can convert light into electricity. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in pharmaceutical production. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities for zinc sulfide to be used in optical device production.

Price of Zinc Sulfide powder :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with over 12 years' experience. They provide super-high-quality chemicals, such as silicon powders, nitride particles, graphite particles, zinc sulfide grains, boron grains, etc.

Contact us and submit an inquiry if you want to buy high-quality zinc sulfur powder.

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

Chile's government is considering phasing in a proposed ban on glacial mining to limit projects high in the Andes by some big copper companies. Chile's constitutional assembly has approved a proposal to ban mining in glaciers, protected areas, and areas vital to protecting the country's water system.

Chile's mining minister, Marcela Hernando, said about 20 mines had been identified in protected areas, some close to glaciers, including Codelco's El Teniente and Andina projects and Anglo American Plc's Los Bronces project.

The new measures for glaciers and other protected areas will put about a fifth of Chile's copper 3D printing metal powder prices are predicted to increase in the next few days.

What Powder is Used for Metal 3D Printing?
Stainless steel (17-4 PH, 316L, 304)
Tool steel (H13, A2, D2)
Special alloy (Inconel iron alloy, cobalt-chromium alloy, etc.)
Titanium (Ti64)
Aluminum (4047, 6061, 7075)
 
Steel 3D Printing
Steel is the most common metal material for 3D printing. Its strength, ability to convert into 3D-printed metal powder, relatively low cost, and post-processability make it a material that can be used in many applications. Most types of steel can be printed: the two most common are stainless steel and tool steel. Not all steel is often printed -- alloy steel, the most common conventional manufacturing method, is rarely printed. Due to their lower conventional manufacturing costs and poor material properties, they are of low value as printing materials. 
 
Stainless steel 
Stainless steel is tough, hard steel with excellent corrosion resistance due to its significant chromium content (at least 12% and often up to 18%). They come in two different varieties, austenite and martensite. 
Austenitic stainless steel is the most common type of stainless steel. They are corrosion resistant and can be machined and welded, but not heat treated. 303 and 304 are the most common austenitic stainless steel types, while 316L is the variant that maximizes corrosion resistance. 
Martensitic stainless steel is much harder than austenitic steel but is more brittle and less resistant to corrosion. Taken as a whole, they lack the versatility of austenitic steels -- however, they can be heat treated and precipitated hardened. They are best when you need hard stainless steel. 17-4 PH is a particularly useful martensitic stainless steel that can be heat-treated to suit a variety of material properties -- it is also the most common martensitic steel, although others have been printed (e.g.420). 
 
Tool steel 
Tool steel is named after its core application -- all kinds of tools. They contain carbides, extremely hard compounds that are essential for their ability to cut, grind, press, shape, or form. In general, they are very hard, durable, and can be used at high temperatures. Tool steels are classified according to the AISI-SAE classification system and classified into types according to function. The three most common types of metal 3D printing are A series, D series, and H series tool steels. 
A Series tool steels are excellent general-purpose tool steels -- they balance wear resistance and toughness and are machinable. There are eight a-series tool sheets of steel, the most common of which is A2. It is versatile tool steel, usually used in the manufacture of punches and dies, but can be used in a variety of applications. 
D Series tool steels are optimized for wear resistance and hardness. They are not particularly tough and are only used for cold working applications. The most common variety of d-series tool steel is D2 -- it's used in all kinds of cutting tools, from blades to industrial cutting tools and even cutting tools. 
H Series tool steels cut and shape materials at high (or circulating) temperatures. They do not wear as well as A or D series tool steels at low temperatures but retain their strength and stiffness well at high temperatures. Although there are many types of H-series tool steels, H13 is the most common type for 3D printing. It combines excellent toughness, wear-resistance, and heat resistance, making it good general-purpose tool steel, optimized for high temperatures (hot working). 
 
Titanium 3D Printing 
While titanium is by no means a common material for routine manufacturing, its unique properties and high base cost make it an ideal choice for 3D printing. It is strong, light, heat resistant, chemical resistant, and biocompatible. Although several different types of titanium can be printed, one is by far the most common: Titanium 64 (Ti-6Al-4V)
Ti64 is the most common type of titanium used in 3D printing and conventional manufacturing. It has an excellent strength-to-weight ratio and can be heat treated to further enhance strength. The material also performs well in harsh environments due to its corrosion and heat resistance. As a result, it is widely used in aircraft (missiles, rockets, aircraft) medicine (as orthopedic implants), and other places that favor a high strength-to-weight ratio. 
 
Aluminum 3D Printing 
Aluminum is notoriously difficult to print. As a result, it is a relatively uncommon printed material, although very common in traditional manufacturing. The variety printed is usually cast grade aluminum, rather than the more common machinable types, such as 6061 or 7075. These cast-grade aluminum alloys all have a significant (up to 12%) silicon content and are weaker and less hard than 6061. It's not immediately clear when aluminum will be more readily used as a material for 3D printing, but until then, materials like steel and titanium have achieved similar strength-to-weight ratios when printed using open-hole fillers. 
 
Special Alloy 
In addition to more common metals, 3D printers can make parts from alloys that are particularly suited to harsh environments. These "superalloys" -- metals with high strength, heat resistance, good surface stability, and resistance to corrosion or oxidation -- can be used in a variety of high-performance applications. Two subgroups are most common: Inconel and cobalt-chromium. 
 
Inconel 
Inconel is the most common and well-known proprietary nickel alloy. It is a very strong, hard, and corrosion-resistant material used in places such as turbines, engine seals, and rockets. There are two main formulas for 3D printing: Inconel 718 is stronger, and Inconel 625 is more heat resistant. Both materials are expensive to process traditionally, making 3D printing a cost-effective alternative to manufacturing high-fidelity parts. 
 
Cobalt chromium 
Cobalt-chromium is a superalloy known for its biocompatibility, high strength-to-weight ratio, and corrosion resistance -- it's essentially a higher-grade, more expensive version of titanium. Like Inconel, it is used in turbines and other harsh environments. Unlike Inconel, it can be used in medical applications as an orthopedic or dental implant. 
 
3D Printing Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing powder price, you can send us your inquiry for a quote. ([email protected])
 
3D Printing Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing powder, please feel free to contact us and send an inquiry. ([email protected])

 

With Tesla's new factory in Germany starting 3D printing metal powder. In the future, the demand for 3D printing metal powder will become more and more extensive. Please feel free to contact us for the latest news on 3D printing metal powder.

High Purity Tin Sn Powder CAS 7440-31-5,99%

Recently, the International Energy Agency released its monthly report on the oil market. Affected by hot weather and soaring natural gas prices, some countries have had to change their ways of generating electricity and switch to oil-fired power generation, according to the report. At the same time, European industries, including oil refining, are also switching to fuel, so global oil demand this year will grow faster than previously forecast. The International Energy Agency expects global oil demand to be 99.7 million barrels a day in 2022. The IEA also said international oil prices had fallen to $30 a barrel from a peak in June due to increased oil supplies and heightened concerns about a deteriorating economic outlook.


Recently, Turkey and Russia have reached an agreement in principle to use rubles to pay for part of Russian natural gas, and the time and price of gas supply will be determined in the near future, Turkey's Minister of Energy and Natural Resources said. At the same time, the two sides are discussing the possibility of using the Turkish lira to cover part of the transit transport costs. On the 5th of this month, the presidents of Russia and Turkey held a meeting in Sochi. The two sides agreed that the two countries would start using rubles to settle part of Russia's natural gas supplies to Turkey.


Because of the turbulent international situation, the supply and prices of many international bulk Tin powder are still very uncertain.

About Tin Sn Powder:
Tin powder is a silvery-white shiny soft metal (tetragonal and cubic), ductile. Tin melting point is 231.88 ℃. Tin boiling point is 2270 ℃. Tin relative density is 7.28. Tin metal powder is soluble in concentrated hydrochloric acid, sulfuric acid, aqua regia, concentrated nitric acid, hot caustic solution, slowly soluble in cold dilute hydrochloric acid, dilute nitric acid and hot dilute sulfuric acid, cold caustic solution, in acetic acid more slowly. Stable in air, but tin powder is more easily oxidized, especially in humid air more easily oxidized. Tin powder is a material used in the electronic industry and used as a high purity reagent.
Tin element is a natural element in the earth's crust. Pure Tin powder is a soft, white, silvery metal that does not dissolve in water. It is found in a brass, bronze, tin and some welding materials.Tin is used to pack cans of food, drinks and aerosols.Tin can combine with other chemicals to form compounds. Combinations with chemicals such as chlorine, sulfur, or oxygen are called inorganic tin compounds (i.e., stannous chloride, stannous sulfide, and stannous oxide). They are used in toothpaste, perfumes, soaps, food additives and dyes.Tin can also combine with carbon to form organotin compounds (i.e., dibutyltin, tributyltin, triphenyltin). These compounds are used in the manufacture of plastics, food packaging, plastic pipes, pesticides, paints and insecticides.Tin, as well as inorganic and organotin compounds, can be found in the air, water, and soil naturally occurring in rocks or near places of mining, manufacture or use.

Tin powder for sale:

TRUNNANO is a trusted global Tin powder supplierFeel free to send an inquiry about the latest Tin powder price at any time.

Features of Tin Sn powder CAS 7440-31-5 :
Grayish green powder, melting point 231.88℃. The boiling point is 2270℃. The relative density is 7.28. Soluble in concentrated hydrochloric acid, sulfuric acid, aqua regia, concentrated nitric acid, hot caustic soda solution, slowly soluble in cold dilute hydrochloric acid, dilute nitric acid and hot dilute sulfuric acid, cold caustic soda solution, dissolve more slowly in acetic acid. It is stable in air, but tin powder is easier to oxidize, especially in humid air. Materials for the electronics industry, used as high-purity reagents.

Specification of tin powder:

Item

Purity

APS

Color

Bulk Density

Morphology

SSA

Tin(Sn) Nanoparticle

99.5%

60nm,100nm

 Grey

0.72g/cm3

Sphere

7m2/g

 

How is Tin Sn Powder Produced?
Anti-oxidation tin powder preparation methods, including metal melt, spray and other steps, whose character is: the temperature of the molten tin liquid metal melting process control in 295 ~ 310 ℃, it is joined benzene and three azole nitrogen additive in the process of atomization, the addition amount of melted metal tin liquid 0.005% ~ 0.008%, and the weight of the atomization process of ventilation with the high-pressure airflow control in 7 ~ 8.2 m3 / min. The -180 mesh metal tin powder obtained by this method is used in the field of friction materials.
 
Tin powder Uses:
Tin powder is mainly used in the manufacture of solder paste, electric carbon products, friction materials, oil-bearing and powder metallurgy structural materials.
It can also be used as metal electrical filler, lubricant and conductive paste.
Tin powder can also be used as a wild phase to effectively improve the mechanical and electrical properties of metals and ceramics.
Tin is one of the most widely used non-ferrous metals, widely used in metallurgy, electronics, electrical appliances, chemical industry, building materials, machinery and food packaging industries. As lead-free trends continue to develop worldwide, electronics manufacturers will increasingly incorporate tin powder into their products. At the same time, with the increasing awareness of environmental protection, tin powder non-toxic environmental properties will make it in the future will be constantly applied to medicine, chemical industry, light industry, food, health care, art supplies and other packaging fields. The importance of tin powder has become increasingly apparent.
 

Storage Conditions of tin powder:

The damp reunion will affect its dispersion performance and using effects, therefore, this product should be sealed in a vacuum and stored in a cool and dry room and it should not be exposure to air. In addition, Tin Nanoparticles should be avoided under stress.


Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.
If you are looking for high-quality pure Tin powder, please feel free to contact us and send an inquiry. (sales3@nanotrun.com)

Tin Powder Properties

Other Names Tin particles, Tin microparticles, Tin micropowder, Tin micro powder,
Tin micron powder, Tin submicron powder, Tin sub-micron powder
CAS No. 7440-31-5
Compound Formula Sn
Molecular Weight 118.69
Appearance Gray to Black Powder
Melting Point 232
Boiling Point 2602
Density 7.265-7.31 g/cm3
Solubility in H2O N/A
Electrical Resistivity 11.5 x 10-8 Ω·m
Poisson's Ratio 0.36
Tensile Strength N/A
Thermal Conductivity 66.8 W/cm/K
Thermal Expansion (20 °C) 22.0 µm·m-1·K-1
Vickers Hardness N/A
Young's Modulus 50 GPa
   
   

Tin Powder Health & Safety Information

Signal Word Warning
Hazard Statements H315-H335
Hazard Codes Xi
Risk Codes 36/37
Safety Statements 26
Transport Information NONH

The current international situation is highly uncertain, and its economic impact has not been able to be assessed properly. In addition, rising energy and commodity prices and supply chain disruptions are expected to push the price of the Tin powder higher.

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

The US President recently said the conflict between Russia and Ukraine had driven up the prices of all the world's major food staples, including wheat, corn, barley, oilseeds and edible oils, and that Russia and Ukraine together supplied more than 25% of the world's wheat exports and about 20% of its barley exports. 

To address the food shortage, the Biden administration says it plans to increase the number of counties eligible for insurance for double cropping. Double cropping is when farmers grow two different crops a year on the same field. 

Under Biden's plan, the number of counties eligible for two-season crop insurance would increase by 681, for a total of 1,935. 

The UN has warned that up to 1.7bn people are "highly exposed" to the domino effect of the conflict between Russia and Ukraine on the global food, energy, and financial systems.  The agency says conflict could increase hunger in countries where people are already suffering from malnutrition.

Even countries where food is less scarce are being hit by rising prices. U.S. grocery prices rose 1% in April, compared with a 10.8% increase over the past 12 months, the Labor Department said recently.

According to the White House, global food prices have risen nearly 13 percent since the outbreak of the Russia-Ukraine conflict. 

Besides, affected by the ever-changing international situation, the supply and prices of international bulk silver nano powder are still very uncertain.

About Nano Silver Ag powder:
Ag is silver. Nano Silver, or ag nanoparticles, silver nanoparticles, is a metal Silver with a particle size of nanoscale.

Is Nano Silver healthy?
The size of the nanosilver is mostly about 25 nanometers, which has strong inhibition and killing effect on dozens of pathogenic microorganisms such as Escherichia coli, Neisseria gonorrhoeae and Chlamydia trachomatis, and will not produce drug resistance. Made of nanometer silver and combed cotton fiber, cotton socks have good antibacterial and deodorant effects. 

Does Nano Silver kill germs?
In addition to being able to release silver ions, silver nanoparticles can themselves kill bacteria. Silver nanoparticles can accumulate in the pits that form on the cell wall after they anchor to the cell surface. The accumulated silver nanoparticles can cause cell membrane denaturation.

Does Nano Silver kill good bacteria?
Silver nanoparticles play an important role in the field of microelectronics because of their excellent electrical conductivity. Due to the surface effect and quantum size effect, silver nanoparticles also have some special applications, such as surface-enhanced Raman applications and medical applications.

Which is better nano silver or colloidal silver?
Colloidal silver cannot be used with other beneficial agents and has a weak effect on the biofilm. Therefore, it does not do a sufficient job protecting enamel and balancing the oral biofilm by reducing acid. Nano Silver can be used at much lower concentrations and can penetrate biofilms with ease.
Nanosilver is a powdered silver elemental, particle size is less than 100nm, generally between 25-50nm. The properties of silver nanoparticles are directly related to their particle size. Studies have found that the smaller the particle size, the stronger the bactericidal performance. 

What are the side effects of nano silver?
Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen.
Silver Nanopower/Nanopower is a versatile substance with pharmacological, antimicrobial, conductive and chemical uses. Nanopower is dissolved in a variety of solvents, including water, ethanol and isopropyl alcohol, to produce a convenient suspension. Research continues to reveal new applications for silver nanoparticles in areas such as biotechnology, medicine, electronics and manufacturing, where they often achieve the same end result as more expensive solutions.

TRUNNANO is a trusted global
Nano silver powder supplier. Feel free to send an inquiry about the latest Nano silver powder price at any time.

Features of Nano Ag Silver powder cas 7440-22-4:
Silver nano powder or Ag powder is a kind of metallic silver with nano scale particle size.

Most of the nano silver has a particle size around 25 nm. According to the tests on Animals, there is no exhibition of being poisoned even if the dosage of silver nanoparticles is thousands of times used more than the standard dose.

Meanwhile, it helps to repair the damaged epithelial cells. What worth to be mentioned is that the antibacterial effects of Ag nanoparticles become more enhanced when in water, which is more effective to the treatment of diseases.
The experts believe that this nano silver anti-bacterial nanopowder can be widely used in the field of environmental protection, textiles and clothing, fresh fruit, food and health.

 

How is Nano Ag Silver powder produced?
There are many ways to prepare nano-silver, including the physical crushing method, vacuum condensation method and mechanical ball milling method. Chemical methods are reduction method, electrochemical reduction method, photoreduction method, gas-liquid two-phase method, hydrothermal synthesis method, precipitation method synthesis method, etc. The preparation methods of silver nanoparticles are gradually mature, and the cost and production efficiency have reached the level of large-scale industrial production. It can be predicted that as a new material, nano-silver particles will have a very broad development prospect in the fields of medicine, biology, environment and so on.
 
Applications of Silver nano powder:
Nanosilver particles (NSPs), are among the most attractive nanomaterials and have been widely used in a range of biomedical applications, including diagnosis, treatment, drug delivery, medical device coating, and personal health care.

What is nano silver used for?
Nanosilver is made up of silver nanoparticles. These particles serve as antibacterial and antifungal agents for industrial purposes, in water treatment, and in consumer products (such as clothing, cosmetics, childcare items, food containers, and many others).
1. The nano silver powder can be used as a pharmaceutical antibacterial, disinfectant;
2. Some of countries use Ag Nanoparticles for anti-AIDS drugs, mixed with zinc oxide powder for disinfection;
3. The silver metal powder used as a chemical catalyst.
4. Also, The nano silver powder used as Antivirus antibacterial material: adding 0.1% silver nanoparticles, the inorganic antibacterial powder, can play an important role in the suppression and killing of dozens of pathogenic micro-organisms such as Escherichia coli, Staphylococcus aureus.
5. Silver nanoparticles as a new anti-infective product which has broad-spectrum, non-resistance, free from the pH effects, antibacterial, durable, non-oxidized black and many other properties, Ag Nanoparticles can be widely used in medical, household fabrics and health care supplies.
6. Adding nano silver powder as antibacterial, anti-corrosion coating paint materials can also be used successfully in the construction and preservation of relics.
Manufacturers produce household items that utilize the antibacterial properties of silver nanoparticles. These products include nano-silver lined refrigerators, air conditioners and washing machines.
7. The nano silver powder for Other current applications: Toys, Baby pacifiers, Clothing, Food storage containers, Face masks, HEPA filters, Laundry detergent. Conductive slurry:
8. The nano silver powder is Widely used for wiring, encapsulation and connection in the microelectronic industry, silver nanoparticles play an important role in the minimization of electronic devices and circuits. Efficacious catalyst: silver nanoparticles can Greatly enhance the chemical reaction speed and efficiency, such as Ethylene oxidation. Biological pharmacy:
9. The nano silver powder can be used in cell death and gene diagnosis.

Storage Condition of Nano Ag Silver powder:
The damp reunion will affect Ag powder dispersion performance and using effects, therefore, silver Ag powder should be sealed in vacuum packing and stored in a cool and dry room, the silver Ag powder can not be exposure to air. In addition, the Ag powder should be avoided under stress.

Packing & Shipping of Nano Ag Silver powder:
We have many different kinds of packing which depend on the silver Ag powder quantity.
Silver Ag powder packing:vacuum packing, 100g, 500g or 1kg/bag, 25kg/barrel, or as your request.
Silver Ag powder shipping: could be shipped out by sea, by air, by express, as soon as possible once payment receipt.


Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.
If you are looking for high-quality nano silver powder, please feel free to contact us and send an inquiry. (sales3@nanotrun.com)

Nano Silver Powder Properties

Other Names AgNPs, Ag NPs, Silver nanopowder, Silver nanocrystals, nano-silver
Silver nano-particles, Silver nano-powder, nanosilver
CAS No. 7440-22-4
Compound Formula Ag
Molecular Weight 107.87
Appearance Gray to Black Powder
Melting Point 660 
Boiling Point 2162 
Specific Surface Area 5.37 m2/g
Solubility in H2O N/A
Thermal Expansion (25 °C) 18.9 µm·m-1·K-1
   
   

Nano Silver Powder Health & Safety Information

Signal Word Warning
Hazard Statements H400-H410
Hazard Codes Xn, N
Risk Codes 22-36/38-50/53
Safety Statements 22-60-61
Transport Information UN 3077 9 / PGIII

Albemarle, the world's largest lithium producer, said it would have to close its plant in Langelsheim, Germany if the EU designated lithium as a hazardous material. The European Commission is currently evaluating a proposal by the European Chemicals Agency (EHCA) to classify lithium carbonate, lithium chloride, and lithium hydroxide as hazardous to human health.

As a result, Albemarle will no longer be able to import lithium chloride, its main raw material, putting its entire plant in Langelsheim at risk of closure, Albemarle chief financial Officer Scott Tozier said. According to Tozier, the plant has annual sales of about $500 million and a forced closure would have a significant impact on Albemarle's operations.  

Industry sources said that listing lithium as a hazardous substance would place an additional burden on the silver nano powder, please feel free to contact us and send an inquiry.

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

Russia and Ukraine is an important exporters of oil, natural gas, metals, fertilizers, rare gases and other industrial raw materials. Affected by the further intensification of the tension of the war, the global market has become more worried about the supply of the Titanium Dioxide TiO2 Powder,Overview of Titanium Dioxide TiO2 Powder, Application of Titanium Dioxide TiO2 Powder,Titanium dioxide TiO2 powder price,Titanium oxide TiO2 powder supplier, and panic spreads in the futures market. Prices of commodities such as aluminum and nickel are at recent highs on concerns that supplies will fall. Russia accounts for 49 percent of global exports of nickel, 42 percent of palladium, 26 percent of aluminum and 13 percent of platinum, and is a significant exporter of steel and copper. Palladium is an important metal for sensors and memory. In addition, Russia is the world's largest exporter of nitrogen fertilizer, the second largest exporter of potash fertilizer, and the third-largest exporter of phosphate fertilizer. Ukraine is also an important producer of nitrogen fertilizer. Russia's natural gas supply also has a significant impact on the global fertilizer industry and Titanium Dioxide TiO2 Powder,Overview of Titanium Dioxide TiO2 Powder, Application of Titanium Dioxide TiO2 Powder,Titanium dioxide TiO2 powder price,Titanium oxide TiO2 powder supplier industry, especially in Europe. The price of the Titanium Dioxide TiO2 Powder,Overview of Titanium Dioxide TiO2 Powder, Application of Titanium Dioxide TiO2 Powder,Titanium dioxide TiO2 powder price,Titanium oxide TiO2 powder supplier will also fluctuate to some extent. Russia carries out crude gas separation, and Ukraine is responsible for refined exports. Ukraine supplies 70% of the world's neon, 40% of krypton and 30% of xenon. These three gases are the materials used to make chips.

Overview of Titanium Dioxide TiO2 Powder

Titanium dioxide is an inorganic substance with the chemical formula TiO2. It is a white solid or powdered amphoteric oxide. The molecular weight was 79.9. It is non-toxic, has the best opacity, the best whiteness and brightness, and is considered one of the best white pigments in the world.

Among the commonly used white pigments, titanium dioxide has the smallest relative density, and among the white pigments of the same quality, titanium dioxide has the largest specific surface area and the largest pigment volume. Titanium dioxide has very stable chemical properties and is an acidic amphoteric oxide. At room temperature, it hardly reacts with other elements and compounds. Ineffective for oxygen, ammonia, nitrogen, hydrogen sulfide, carbon dioxide, sulfur dioxide. Insoluble in water, fat, dilute acid and inorganic acid, alkali, only soluble in hydrofluoric acid. . But under the action of light, titanium dioxide can undergo continuous redox reactions and has photochemical activity. This photochemical activity is particularly evident under the action of UV-anatase titanium dioxide.

{xunruicms_img_title}

 Titanium dioxide is widely used in paint, chemical fiber, cosmetics, paper, ink, plastic, rubber, food and other industries. It has a high melting point and is also used in the manufacture of refractory glass, glazes, enamels, clays, high-temperature laboratory utensils, etc.

Titanium dioxide is used in food pigments (E171). Like all food colorings, its technical role is to make food more visually appealing, to color previously colorless food, or to restore food to its original appearance.

Jelly, fried food, cocoa products, chocolate, chocolate products, hard candy, polished candy, gum-based candy, puffed food, coating of candy chocolate products, mayonnaise, salad dressing, jam, solid beverages, konjac gel food, meat Soups, sauces, salads, and seasoned sandwiches may contain titanium dioxide.

 Application of Titanium Dioxide TiO2 Powder

The most important applications of titanium dioxide are paints, varnishes, and paper and plastics, which account for around 80% of world titanium dioxide consumption. Other pigment applications, such as printing inks, fibers, rubber, cosmetics and food, account for another 8%. The rest are used in other applications such as technically pure titanium, glass and glass ceramics, electrical ceramics, metallic copper, catalysts, electrical conductors and chemical intermediates.

1. Titanium dioxide has become the most widely used white pigment due to its brightness and high refractive index.

2. Powdered titanium dioxide is also an effective sunscreen. It is used as a pigment to provide whiteness and opacity in products such as paints, coatings, plastics, paper, inks, food, pharmaceuticals (such as tablets and pills) and most toothpastes. In painting, it is often abbreviated to "lively white," "perfect white," "whitest white," or other similar terms.

3. Titanium dioxide is used as a colorant in the rubber industry, and also has the functions of reinforcement, anti-aging and filling.

4. Add titanium dioxide to white and colored rubber products, it is resistant to sunlight, no cracking, no discoloration, high stretching ratio, and acid and alkali resistance.

5. Titanium dioxide for rubber is mainly used in automobile tires, rubber shoes, rubber floors, gloves, sports equipment, etc., generally anatase type.

6. In the production of automobile tires, a certain amount of rutile titanium dioxide products are often added to enhance the ability of anti-ozone and anti-ultraviolet rays.

7. Titanium dioxide is also widely used in cosmetics. Since titanium dioxide is non-toxic and far superior to lead white, almost all powdered titanium dioxide can replace lead and zinc white.

8. For permanent whitening, just add 5%-8% titanium dioxide powder, the fragrance is smoother, the adhesion is strong, the absorption is strong, and the covering power is strong.

9. Titanium dioxide in gouache and cold cream reduces greasiness and clarity.

10. Titanium dioxide is also used in many other perfumes, sunscreens, soaps, white soaps and toothpaste.

11. When deposited as a thin film, the refractive index and color of titanium dioxide make it an excellent reflective optical coating for dielectric mirrors.

12. Certain grades of modified titanium-based pigments are used in foam coatings, plastics, topcoats and cosmetics - the particles of these artificial pigments have two or more layers of different oxides (usually titanium dioxide, iron oxide or oxides) . aluminium), which can produce sparkling, iridescent and/or pearlescent effects.

13. Titanium dioxide is used in cosmetics and skin care products as pigments, sunscreens and thickeners, and as sunscreen and anti-ultraviolet pigments.

14. As a sunscreen, it uses ultra-fine TiO2, which is known for its combination with ultra-fine zinc oxide. It is considered an effective sunscreen that reduces the incidence of sunburn and minimizes the effects associated with long-term use. Early photoaging, photocarcinogenic and immunosuppressive sun exposure. extra semester. Sometimes these UV protectants are used in sunscreens along with iron oxide pigments to enhance protection against visible light.

Titanium dioxide TiO2 powder price

The price of titanium dioxide TiO2 powder will change randomly with factors such as production cost of titanium dioxide TiO2 powder, transportation cost, international situation, exchange rate and market supply and demand. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for titanium dioxide TiO2 powder, please feel free to send the latest titanium dioxide TiO2 powder price.

Titanium oxide TiO2 powder supplier

As a global supplier of Titanium Dioxide TiO2 powder, Tanki New Materials Co.,Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced technology and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and provides OEM services.

Titanium Oxide TiO2 powder Properties
Other NamesDioxotitanium, Titanium dioxide, Titania, Titanium(IV) dioxide, Titanic oxide, Titanium peroxide, Titanium oxide powder
CAS No.13464-67-7
Compound FormulaTiO2
Molecular Weight79.9378 g/mol
AppearanceWhite crystalline powder
Melting Point1,843° C (3,349° F)
Solubility in waterN/A
Density4.23 g/cm3
Purity99.50%
Particle Size 5nm-50nm
Boling point2,972° C (5,382° F)
Specific HeatN/A
Thermal ConductivityN/A
Thermal ExpansionN/A
Young's ModulusN/A
Exact Mass79.9378 g/mol
Monoisotopic Mass79.937776 Da
Titanium Oxide TiO2 powder Health & Safety Information
Safety WarningN/A
Hazard StatementsN/A
Flashing pointN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
RTECS NumberXR2275000
Transport InformationNONH for all modes of transport
WGK Germanynwg


As the duration of the conflict between Russia and Ukraine grows, its impact on commodities is widening amid the tug-of-war. Recently, European and American sanctions against Russia have been issued one after another. In response, Russia has taken advantage of its role as an important supplier of many energy and commodities, requiring exports of commodities, including energy, grain, metal, and wood, to "unfriendly" countries to be settled in robles. Therefore, it is expected that the price of the Titanium Dioxide TiO2 Powder,Overview of Titanium Dioxide TiO2 Powder, Application of Titanium Dioxide TiO2 Powder,Titanium dioxide TiO2 powder price,Titanium oxide TiO2 powder supplier will continue to increase.  


What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum disulfide:

Molybdenum disulfide, a compound with the formula MoS2, is a common transition metal sulfide. It is a dark grey or black solid with a layered crystal structure made up of alternating arrangements of sulfur and molybdenum atoms. Molybdenum disulfide is a good material for chemical and thermal stability. It is easily reacted with bases or acids. It is widely used as an important ingredient in lubricants, additives and composite materials. As an excellent lubricant, molybdenum disulfide has a high load-bearing capacity, good friction resistance and low friction coefficient. This makes it widely used in machinery manufacturing, petrochemical and automobile manufacturing. In extreme environments, such as high temperatures, high loads and high speeds, molybdenum disulfide can play a good lubricating role, reduce friction and wear, and thus extend the service life of the equipment. In addition, molybdenum disulfide can also be used as an additive in fuel, which can improve the combustion efficiency of fuel and reduce pollutant emissions. This additive is significant in environmental protection, helping reduce air pollution and improve energy efficiency.

Application of Molybdenum disulfide:

Molybdenum disulfide is an important compound with excellent chemical and physical properties. It is extensively used in many areas. It has good chemical and physical properties. The following are the main application areas of molybdenum disulfide:

Lubricants: Molybdenum disulfide is an excellent lubricant with high load-carrying capacity, good friction resistance and low friction coefficient. It can play a good lubrication role in extreme environments such as high temperature, high load and high speed, so it is widely used in machinery manufacturing, automobile manufacturing and petrochemical industry. Molybdenum disulfide lubricant can also make lubricating oil, grease and lubricating film.

Additive: Molybdenum disulfide can be used as an additive in fuel, which can improve the combustion efficiency of fuel and reduce pollutant emissions. This additive is significant in environmental protection, helping reduce air pollution and improve energy efficiency. In addition, molybdenum disulfide can also be used as an additive to materials such as rubber, plastics and coatings to improve the properties of materials.

Composite materials: Molybdenum disulfide can be combined with resins, rubber and other materials to prepare high-performance composite materials, such as reinforced plastics, composite fibres and so on. These composites have excellent mechanical properties and corrosion resistance and are widely used in automotive, aerospace and electronics.

Electronic industry: Molybdenum disulfide can be used as a thin film material for electronic vapour deposition to prepare MoS2 thin films with excellent electrical conductivity and light transmission. This thin film material has potential applications in optoelectronics, such as solar cells and displays. In addition, molybdenum disulfide can be used to make transistors, field-effect transistors and other electronic components with good semiconductor performance and electronic mobility.

Production Method of Molybdenum disulfide:

Molybdenum disulfide is an important compound with good physical and chemical properties widely used in many fields. There are many production methods, including synthesis, double decomposition, flotation, electroplating, etc. Among them, synthesis is a commonly used method to produce molybdenum disulfide.

The synthesis method is a method to produce nano MoS2 by reacting a tungsten or molybdenum source with a sulfur source. This method can produce sulfides with high purity, fewer impurities and fine particle size. It can prepare sulfides that meet different functional requirements, so the production of nano-sulfides by synthesis has been paid much attention. The specific steps of the synthesis process include raw material preparation, chemical reaction, product separation and purification.

In the raw material preparation stage, preparing a tungsten or molybdenum source and a sulfur source is necessary. Tungsten or molybdenum sources are usually oxides or metal powders, while sulfur sources can be elemental sulfur or sulfide. When selecting tungsten or molybdenum and sulfur sources, factors such as the purity, chemical properties and reaction conditions of raw materials must be considered.

In the chemical reaction stage, tungsten or molybdenum sources and sulfur sources are biochemical reactions under high temperatures to produce molybdenum disulfide. The specific reaction conditions include reaction temperature, reaction time and reaction atmosphere. The reaction temperature and time have important effects on the particle size and purity of the product, and the reaction atmosphere also affects the structure and properties of the product.

In the product separation and purification stage, molybdenum disulfide must be extracted from the reaction products using appropriate separation and purification methods. The commonly used separation and purification methods include precipitation, filtration, extraction, distillation, etc. These methods can separate molybdenum disulfide from other impurities to obtain high-purity molybdenum disulfide products.

In addition to the synthesis method, there are other methods of producing molybdenum disulfide, such as the double decomposition method, flotation method and electroplating method.

The compound decomposition method produces molybdenum disulfide by the reaction of ammonium tungate or ammonium molybdate with ammonium sulfide. The method can produce molybdenum disulfide at a lower temperature, and molybdenum disulfide products with different morphologies and particle sizes can be prepared.

Flotation is a method of extracting molybdenum disulfide from the mixture by grinding tungsten or molybdenum sources with minerals such as pyrite or sphalerite and using organic agents. This method can produce high-purity molybdenum disulfide products, but the production process is more complicated and requires more organic agents.

Electroplating is a method of producing molybdenum disulfide film by electroplating molybdenum disulfide on a metal substrate. Molybdenum disulfide films with excellent properties can be prepared by this method, but the chemical reagents and waste liquid in the electroplating process will cause pollution to the environment.

Different production methods have different advantages and disadvantages, and it is necessary to choose the appropriate production method according to the actual demand. At the same time, paying attention to environmental protection and safety in the production process is necessary.

Prospect Market of Molybdenum disulfide:

Molybdenum disulfide is a significant chemical compound with excellent chemical and physical properties and extensively employed in machinery, industry electronics, aerospace, and many other fields. With the continuous development of the global economy and the rapid development of high-tech fields, the demand for molybdenum disulfide is increasing. Therefore, the molybdenum disulfide market has broad prospects and potential for future development.

First of all, molybdenum disulfide as a high-performance lubricant is widely used in machinery manufacturing, automobile manufacturing, petrochemical and other fields. With the continuous development of industrialization and the large-scale precision and automation of mechanical equipment, the requirements for lubricants are getting higher and higher; molybdenum disulfide is an excellent lubricant material, and its market demand will continue to grow.

Secondly, in the field of additives, molybdenum dioxide can be utilized as an additive to fuels that enhance the efficiency of combustion in fuel, reduce pollutant emissions, help reduce air pollution and improve energy efficiency. With the continuous enhancement of environmental awareness and the strengthening of environmental protection policies, the application of molybdenum disulfide as an environmentally friendly additive will be further promoted.

In addition, in composite materials, molybdenum disulfide can be combined with resins, rubber and other materials to prepare high-performance composite materials, such as reinforced plastics, composite fibres and so on. These composite materials have excellent mechanical properties and corrosion resistance and are widely used in automotive, aerospace, electronics and other fields. With the rapid development and technological progress in the high-tech field, the demand for high-performance composite materials will continue to increase; molybdenum disulfide is a component of high-performance composite materials, and its market demand will also be improved.

In addition to traditional applications, molybdenum disulfide can be applied to new energy fields, such as solar cells and energy storage batteries. With the continuous development and promotion of new energy technologies, the demand for molybdenum disulfide will continue to increase, providing new impetus for developing the market.

In addition, with the continuous improvement of the production process and the reduction of production costs, the price of molybdenum disulfide will gradually decline, promoting further market demand growth. At the same time, with the continuous enhancement of environmental awareness and the continuous progress of technology, some new production processes and technologies will gradually be applied to the production of molybdenum disulfide, further promoting the development of the molybdenum disulfide market.

According to the report of the market research company, the global molybdenum disulfide market will maintain rapid growth in the next few years, with an annual growth rate of more than 10%. By 2025, the global molybdenum disulfide market is expected to reach more than $1 billion. Among them, China, as a large producer and consumer of molybdenum disulfide, the market size will continue to maintain rapid growth.

Molybdenum disulfide Powder Price :

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest Molybdenum disulfide powder price, you can send us your inquiry for a quote.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. () is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing

high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, boron powder, 3D printing powder, etc.

If you are looking for high-quality Molybdenum disulfide powder, please feel free to contact us and send an inquiry.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed mainly of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is used widely in the aerospace and military industries for its hardness and high melting point. The article will give a detailed description of the physical properties and chemical composition, preparation techniques, performance characterization and application fields.

Physical Properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical Properties

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in environments with high temperatures and corrosive elements.

Preparation method

Preparation methods for boron carbide The main methods are the arc melting and chemical vapour deposit method.

Methode de réduction du carbothermal

The carbon thermal method is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid or borax to create boron carbide. The reaction formula is B2O3 + 3C - B4C. Reaction temperature is usually 1800 - 2000°C. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C B4C+6H2. The reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term 'property' is used to describe a wide range of physical, chemical, mechanical, and biological properties.

Physical property

Density, conductivity, thermal resistance, etc. are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in environments with high temperatures and corrosion.

Mechanical property

Boron carbide's high melting point, hardness and heat transfer make it a popular material in the aerospace, military and industrial fields. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience in the field of Nanomaterials & Super High-Quality Chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email to sales1@rboschco.com if you are interested in Boron carbide.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement proportion problem: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation rates of the concrete are accelerated. This results in cracking on the concrete's surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Solution: Add a crack-preventing agent. A composite anti-cracking agents made of inorganic materials can stop more than 80% foam concrete from cracking. Add 2 to 3 kilograms per cubic foot.

What is Zinc Sulfide ZnS Product?

How is lithium 12-hydroxystearate produced?

What is the scope of application of boron nitride?

Preparation method of tungsten boride

Magnesium oxide product types

Main applications of molybdenum disulfide

Overview of vanadium nitride VN powder

Overview and wide application of molybdenum disulfide

Properties of cuprous oxide Cu2O powder

Wide application of lithium 12-hydroxystearate

Application of Chromium Diboride CrB2 Powder

Nano diamond powder supplier

How to determine the optimum dosage of concrete superplasticizer

How is vanadium nitride VN powder produced?

Structure and Properties of Molybdenum Carbide Mo2C Powder

Application of tungsten disulfide WS2 in the field of power storage

Overview and Application of Nickel Alloys

Overview and properties of manganese silicide

Powdered Instant Sodium Silicate CAS 1344-09-8 Sodium Silicate Powder

Powdered Instant Potassium Silicate CAS 1312-76-1 Potassium Silicate Powder,99%

Newskanotievet is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newskanotievet.